

Trends and Changing Location Requirements in Manufacturing

René Buck

CEO Buck Consultants International

Buck Consultants International

P.O. Box 1456

6501 BL Nijmegen

The Netherlands

P: +31 24 379 02 22

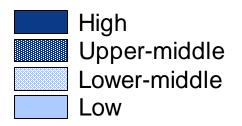
M: +31 65 537 26 12

F: +31 24 379 01 20

E: rene.buck@bciglobal.com

Agenda

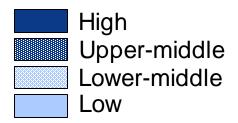
- 1 Framework
- 2 Technology Development
- 3 The Talent Factor
- 4 The Global Manufacturing Landscape
- 5 Attractiveness of Europe
- 6 Location Choices
- 7 Your Role in a Location Decision Process


1 Framework

Manufacturing is diverse: five broad groups with very different characteristics and requirements

Group	Industry	R&D intensity	Labor intensity	Capital intensity	Energy intensity	Trade intensity	Value density
Global innovation	Chemicals						
for local markets	Motor vehicles, trailers, parts						
	Other transport equipment						
	Electrical machinery						
34	Machinery, equipment, appliances						
Regional	Rubber and plastics products						
processing	Fabricated metal products						
	Food, beverage and tobacco						
28	Printing and publishing						

% of global manufacturing value added



Group	Industry	R&D intensity	Labor intensity	Capital intensity	Energy intensity	Trade intensity	Value density
Energy-/ resource-	Wood products						
intensive commodities	Refined petroleum, coke, nuclear						
	Paper and pulp						
	Mineral-based products						
22	Basic metals						
Global	Computers and office machinery						
technologies/ innovators	Semiconductors and electronics						
9	Medical, precision and optical						
Labor-intensive tradables 7	Textiles, apparel, leather						
	Furniture, jewellery, toys, other						

Source: MGI

% of global manufacturing value added

- Advanced industries: industries that conduct significant R&D

 (i.e. R&D spending per worker ranks among top 20% of industries) and employ an above average number of STEM workers
 - 35 manufacturing industries
 - 3 energy industries
 - 12 service industries
- Why do advanced manufacturing industries matter?
 - R&D Innovation capacity
- Employs high skilled STEM workforce

Corporate Inputs

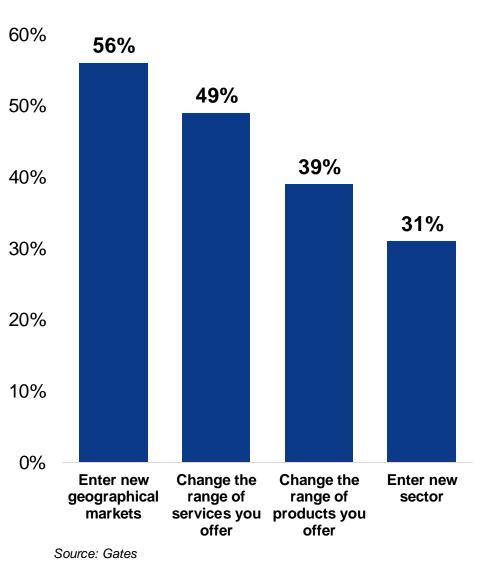
- Productivity
- Profitability
- Exports

Corporate outputs

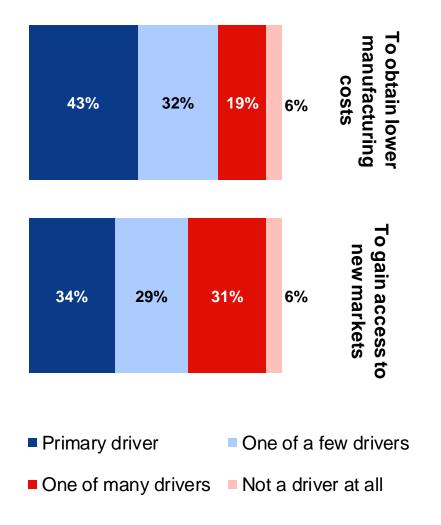
- Well paid jobs
- Economic growth
- Economic multiplier
- Resilience

Regional outputs

How important is growth?



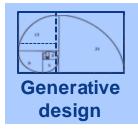
Priority for exploiting opportunities for growth (over the past 12 to 24 months and in the next 12-24 months)


Past 12 to 24 months Past 12 to 24 months 3% 1% 18% 23% 31% 31% 44% 43% Extremely high priority High priority Medium priority No priority at all

Source: Gates

Manufacturers are making big moves to achieve growth

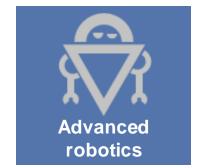
How significant are the following drivers for your international investments?



2 Technology Development

Technological Forces Transforming Industry

Changing the way products come to life



Changing the way products are realized

Changing the way products evolve

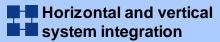
Source: Siemens, 2017

Nine technologies are reshaping production

Advanced robots

Additive manufacturing

- 3D printers, used predominantly to make spare parts and prototypes
- Decentralized 3D printing facilities, which reduce transport distances and inventory



- Digital enhancement, which facilitates maintenance, logistics and SOP's
- Display devices, such as glasses

Simulation

• Network simulation and optimization, which use real-time data from intelligent systems

- Data integration within an across companies using a standard data transfer protocol
- A fully integrated value chain (from supplier to customer) and organization structure (from management to shop floor)

- A network of machines and products
- Multidirectional communication among networked objects

- The management of huge volumes of data in open systems
- Real-time communication for production systems

• The management of heightened security risks due to a high level of networking among intelligent machines, products and systems

- The comprehensive evaluation of available data (from CRM, ERP and SCM systems, for example, as well as from an MES and machines)
- Support for optimized real-time decision making

Ranking of future importance of advanced manufacturing technologies

Advanced Manufacturing Technologies	United States	China	Europe
Predictive Analytics	1	1	4
Smart, Connected Products (IoT)	2	7	2
Advanced Materials	3	4	5
Smart Factories (IoT)	4	2	1
Digital Design, Simulation and Integration	5	5	3
Advanced Robotics	7	8	6
Additive Manufacturing (3D printing)	8	11	9
Open-source Design/ Direct Customer Input	9	10	10
Augmented Reality (to improve quality, training, expert knowledge)	10	6	8
Augmented Reality (to increase customer service & experience)	11	9	11

Source: GMCI, 2016

Extent of digitization varies per sector

MGI Sector Digitization Index – US example 2015 or latest available US data

Relatively low digitization

Relatively high digitization

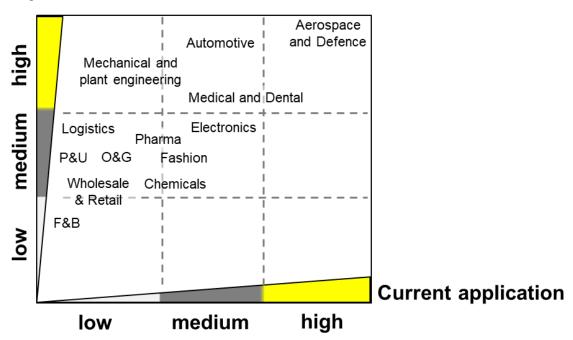
Digital leaders within relatively undigitized sectors

Labor Assets Usage Digital-Digital Digital Overall Digital asset Trans- Inter- Business Market spending capital Digitization actions actions processes making on workers deepening of work digitization spending stock ICT1 Media Professional services Finance and insurance Wholesale trade Advanced manufacturing Oil and gas Utilities Chemicals and pharmaceuticals (2 Basic-goods manufacturing Mining • Real estate Transportation and warehousing • Education Retail trade (3 Entertainment and recreation Personal and local services Government • Healthcare • Hospitality Construction Agriculture and hunting

- Relatively small, knowledge-intensive sectors, highly digitized
- 2 Large, capital intensive, potential to further digitize assets and expand productivity
- 3 Large service sectors, with long tail of small firms having room to digitize customer transactions
- B2B sectors, with potential to digitally engage and interact with customers and users
- Large, labor intensive, with potential to digitally enable workforce, transform, and increase productivity
- 6 Large, localized, low productivity, could transform for productivity and delivery of services

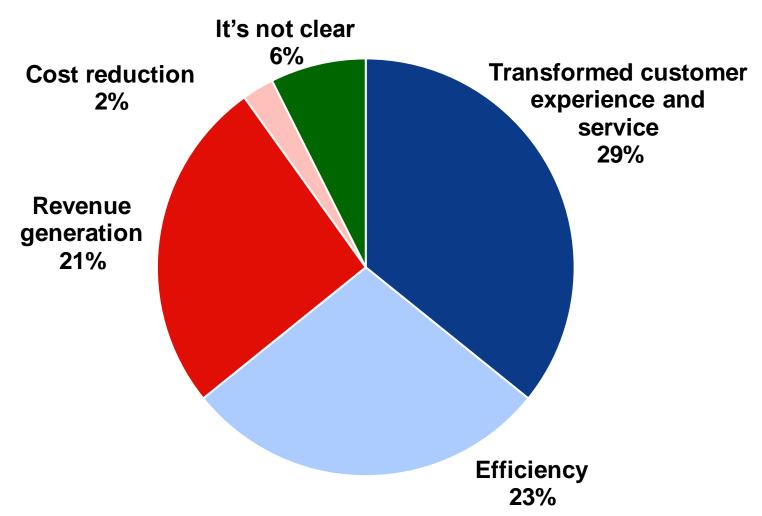
Source: McKinsey, 2017

Four dimensions of IoT's impact


- Connectivity
- Speed
- Accessibility
- 'Anchoring'

Additive Manufacturing

Additive manufacturing involves essentially a one-step fabrication process near the point of end using raw materials and a computer-generated 3D blueprint in place of multi-tiered global supply chains engineered to procure materials, parts and components for processing and assembly by low-cost laborers


Current application and future potential of 3D printing by industry Future potential

Source: EY

Supply chain view of the primary value of 3D printing

Source: Gartner Inc.

Additive manufacturing offers significant benefits

Design and engineering

Faster time to market

- Fast prototyping
- Fast design adjustments

Greater customization

- New customized applications
- More differentiated products

Product enhancements

- Better functionalities/ product performace
- New designs
- Less weight

Manufacturing

Faster/more flexible manufacturing process

- Not setup time in production
- Fewer production steps/ interfaces
- Fewer required parts
- Less assembly time
- More flexibility and better load balance
- Inherent quality assurance process
- Fewer dedicated machines

Higher material productivity

- Less material waste
- New material features

Service

Simplified supply chain

- Localized production
- Elimination of obsolete parts
- Refurbishment for specific components
- Less dependence on suppliers

More efficient sales process

 Customized product exemplification

Relevant for

High-value/
Low-volume business

Spare partsintensive business

Source: Bromberger, 2017

Despite additive manufacturing's many benefits, there are still technological limitations to be overcome

Design and engineering

- Lack of design knowledge (e.g. long-term performance of materials and design for 3D printing)
- High risk of design pirating through users

Manufacturing

- High production costs (e.g. material costs and limits on production speed)
- D Limitations on size (for specific AM technologies)
- Limitations on product quality (e.g. in range and combination of materials, resilience, surface finish)
- Dependence on small number of machine suppliers

Service

- Lack of industry-specific testing procedures (e.g. for production processes)
- H Lack of structural regulations in supplier networks
- Risk of supply chain disruption

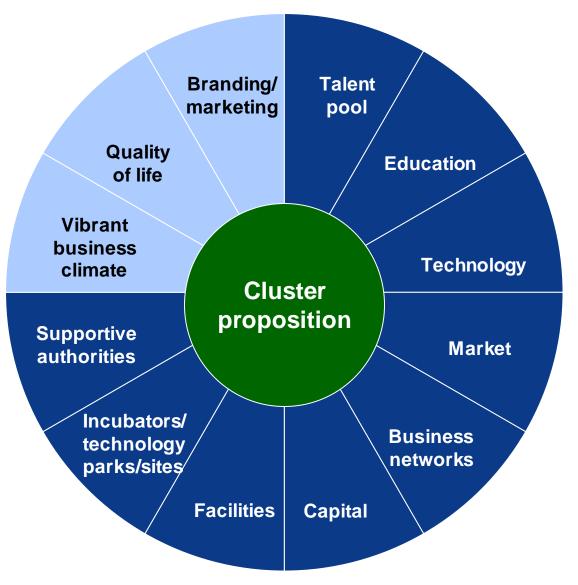
2017

© Buck Consultants International, 2018

15

How can technology driven companies benefit from ecosystems and clusters?

Ecosystem


 conditions to stimulate economic activities, not sector or technology related
 Example: start-up ecosystem in a city

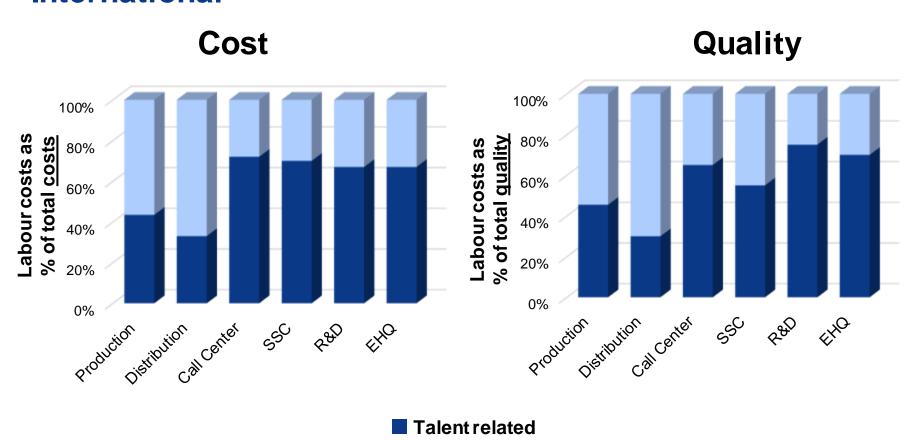
Cluster

defined geographical area where triple-helix partners (enterprises - knowledge institutes/ universities - governments/EDOs) are interconnected and work together in specific sectors/technology domains in order to create more innovation, export, start-ups, educational opportunities

The BCI Cluster Proposition Clock

Key building blocks of a successful cluster

Talent Pool	Availability, skills and experience of the workforce in the specific priority target sector
Education	Availability & reputation of educational institutes at various levels in the specific priority target sector
Technology & Know How	Assessment of the specific technologies available at academic and research institutes as well as within R&D centers of companies. What are the key strengths?
Market	What is the regional/national market for this specific sector, including launching customers
Business networks	Presence, size and activities of (big and small) firms in this particular target sector; life-cycle development stage and level of organization of relevant existing clusters in the sector
Capital	Available venture capital & loans available for business activities in the specific priority target sector
Facilities	(Shared) Advanced research and business facilities open for third party use in this target sector
Office, R&D & industrial sites	Dedicated research, manufacturing and/or office space available in innovation-oriented surroundings, preferably including presence of manifest knowledge intensive organization (public or private)
Supportive authorities	Coherent supportive programs on local and regional level to enhance the development of start-up companies and SME's and to promote the cluster


Secondary supporting building blocks for successful clusters

Vibrant business climate	Overall economic growth and level of innovation in the area
Quality of Life	Quality of life for knowledge workers, including ex-patriates
Branding / marketing	Effort to brand and market the region (and its priority target sectors) on a national and international level

3 The Talent Factor

Sample of recent projects of Buck Consultants International

© Buck Consultants International, 2018

Other factors

Detailed Cost location factors (example)

Running cost

Total employer's cost

1.1 Function x

- 1.2 Function v
- 1.3 Function z
- 1.4 Management

Running cost

Real estate costs

- 2.1 Total cost (rent & charges)
- 2.2 Transition cost
- 2.3 Other cost

Running cost

Other YoY cost

- 3.1 Telecom cost
- 3.2 Management time
- 3.3 Travel & transportation
- 3.4 Other cost

One time -/-

Investment Incentives

- 7.1 Capital grants
- 7.2 Recruitment grants
- 7.3 Training grants
- 7.4 Tax & other incentives

Cost

Cost to Achieve

Build out cost

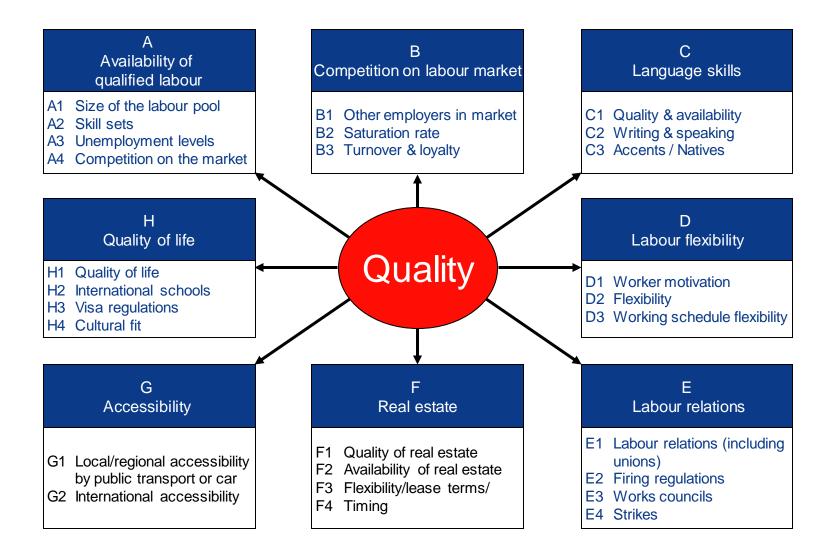
- 5.1 Design cost
- 5.2 Build out cost
- 5.3 Transition cost
- 5.4 -/- Rent free period

Blue = talent related

Cost to Achieve

Labour Related

- 4.1 Recruitment cost
- 4.2 Training cost
- 4.3 Dual running cost
- 4.4 Travel cost & expenses
- 4.5 Relocation / Expat cost


Cost to Achieve

Exit cost

- 6.1 Severance cost
- 6.2 Loyalty premiums
- 6.3 Other costs

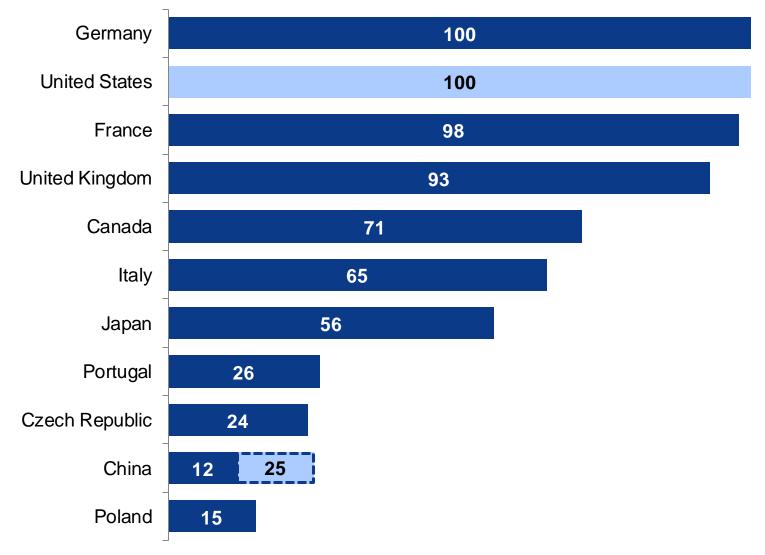
Detailed **Quality** location factors (example)

4 The Global Manufacturing Landscape

Global CEO survey: Global Manufacturing Competitiveness Index rankings by country

2016 (Current)

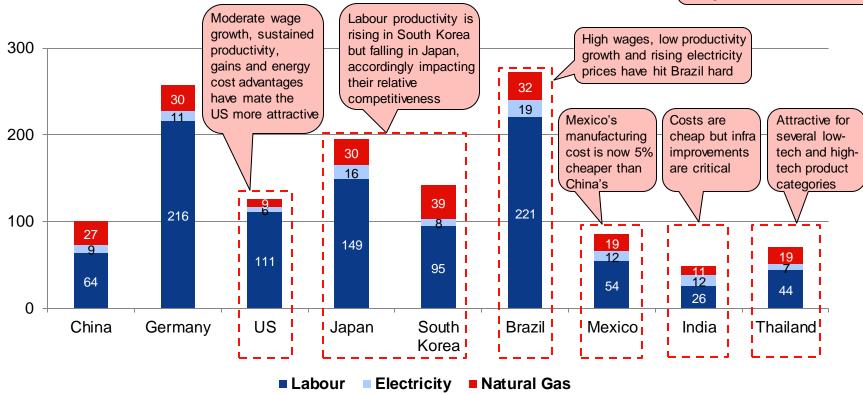
	zoro (Garrent)			
Rank	Country	Index score (100=High) (10=Low)		
1	China	100.0		
2	United States	99.5		
3	Germany	93.9		
4	Japan	80.4		
5	South Korea	76.7		
6	United Kingdom	75.8		
7	Taiwan	72.9		
8	Mexico	69.5		
9	Canada	68.7		
10	Singapore	68.4		
11	India	67.2		
12	Switzerland	63.6		
13	Sweden	62.1		
14	Thailand	60.4		
15	Poland	59.1		
16	Turkey	59.0		
17	Malaysia	59.0		
18	Vietnam	56.5		
19	Indonesia	55.8		
20	Netherlands	55.7		


2020 (projected)

Rank	2016 vs 2020	Country	Index score (100=High) (10=Low)
1	+1	United States	100.0
2	-1	China	93.5
3	$\leftarrow \rightarrow$	Germany	90.8
4	$\leftarrow \rightarrow$	Japan	78.0
5	+6	India	77.5
6	-1	South Korea	77.0
7	+1	Mexico	75.9
8	-2	United Kingdom	73.8
9	-2	Taiwan	72.1
10	-1	Canada	68.1
11	-1	Singapore	67.6
12	+6	Vietnam	65.5
13	+4	Malaysia	62.1
14	$\leftarrow \rightarrow$	Thailand	62.0
15	+4	Indonesia	61.9
16	-1	Poland	61.9
17	-1	Turkey	60.8
18	-5	Sweden	59.7
19	-7	Switzerland	59.1
20	+3	Czech Republic	57.4

Source: DTTL, 2016

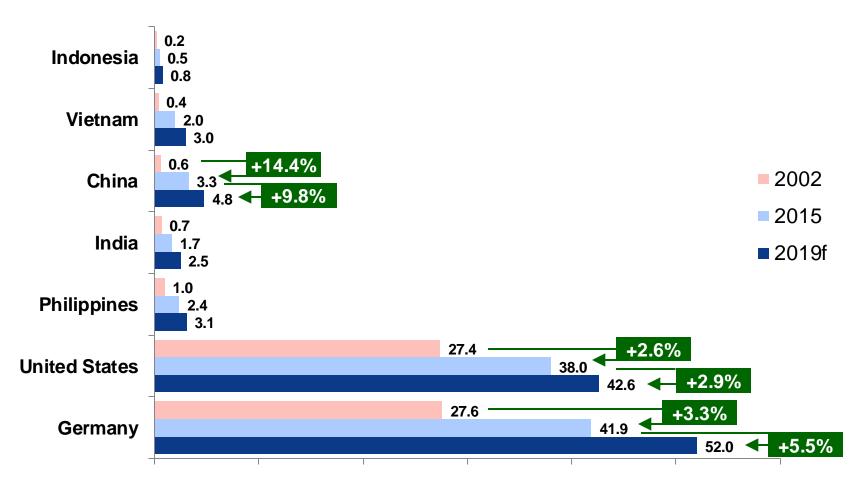
International comparison labour cost per hour Manufacturing


Source: IDW/BCI

Lower cost alternatives versus China

Input cost comparison* across selected major global manufacturers

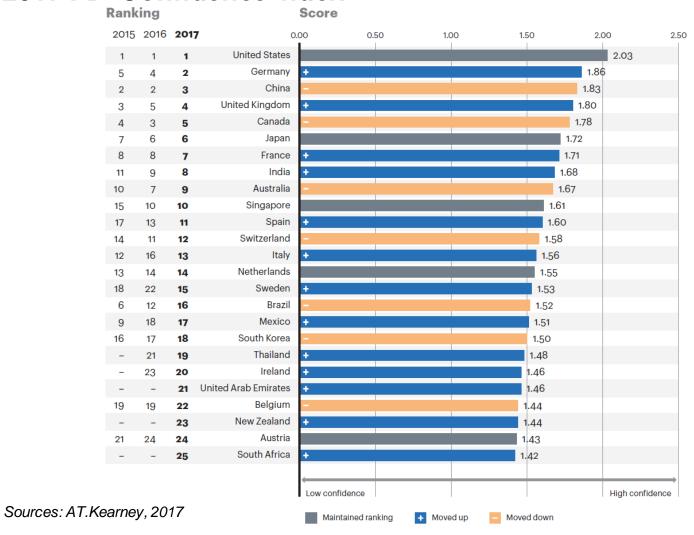
China's total input cost (labour, electricity and natural gas) is assigned a value of 100


* Note: To facilitate a cost input comparison across economies, China's total cost (i.e. sum of labour, electricity and natural gas) is assigned a value of 100 within the index and the costs in other economies are scaled accordingly

Source: TBA

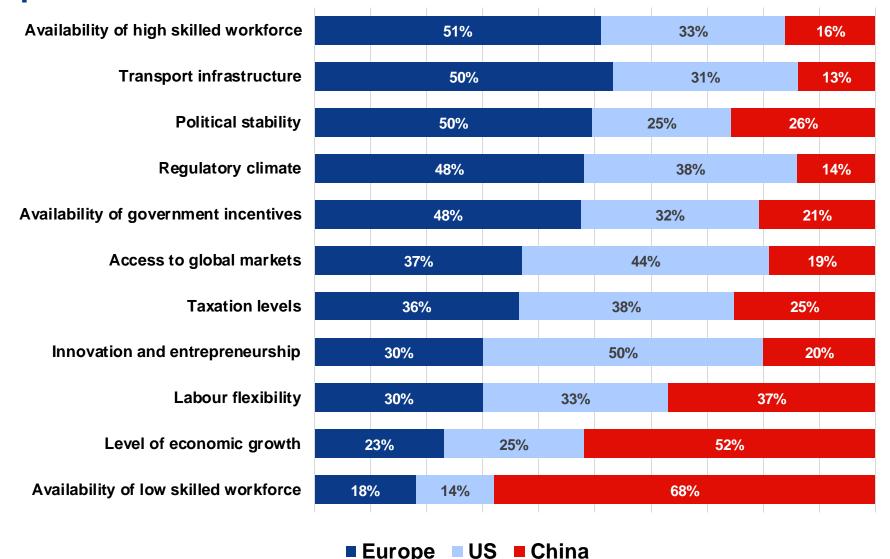
China's cost advantages are starting to slip

Manufacturing labor costs USD per hour (annual growth)



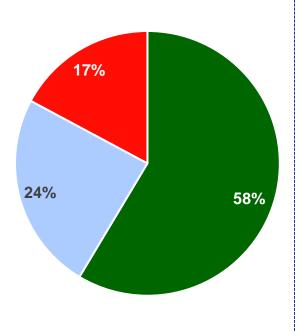
Sources: EIU/ATK

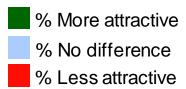
5 Attractiveness of Europe



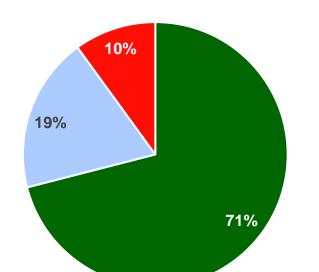
2017 FDI Confidence Index

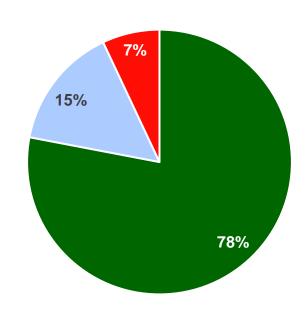
Which country/region is the strongest performer?

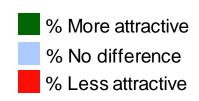




Source: Ipsos, 2017

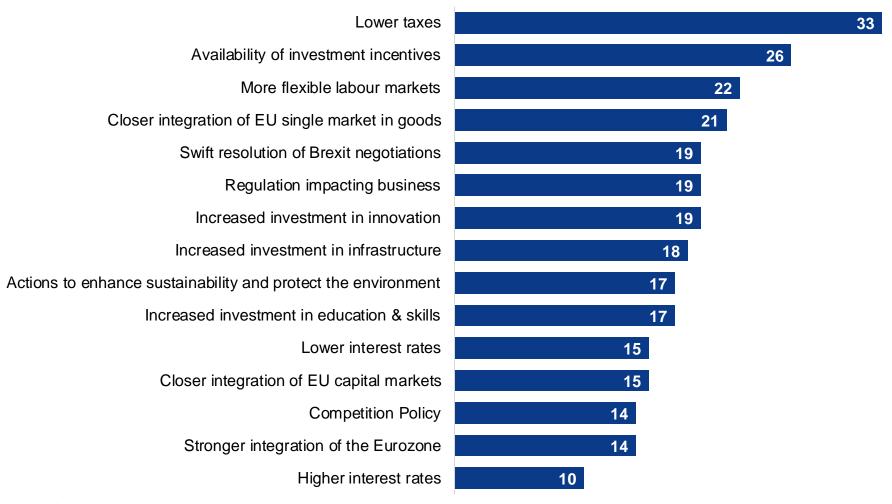

Most investors say Europe has become more attractive in the last five years as an investment destination





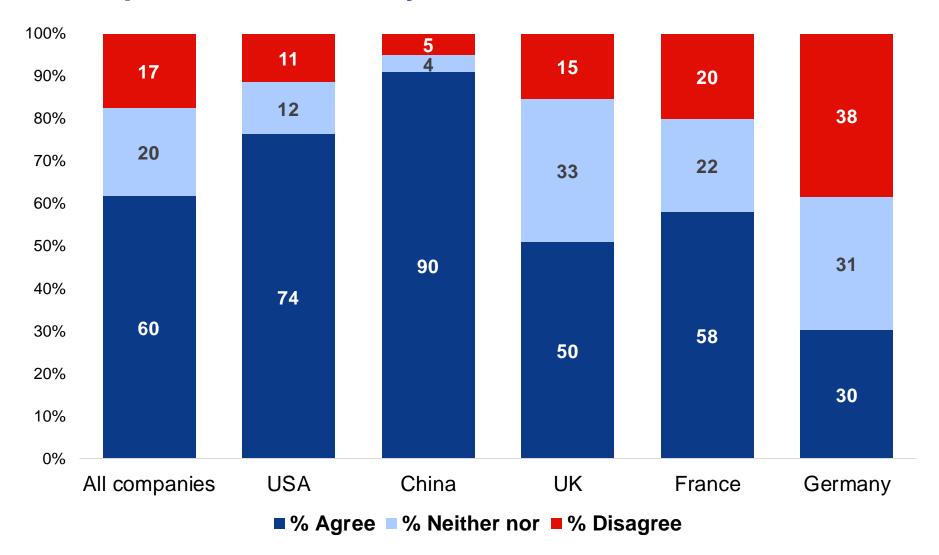
US companies

Chinese companies



Source: Ipsos, 2017

C-level executives: lower taxation is the most popular way to boost Europe's attractiveness


(showing % issues selected as priority 1, 2 or 3)

Source: Ipsos, 2017

Investors will increase their investment in Europe over the next 5 years

Source: Ipsos, 2017

6 Location Choice

Narrow down from long list to site level

Stage A

Start up:

Definition investment profile and location requirements

Stage B

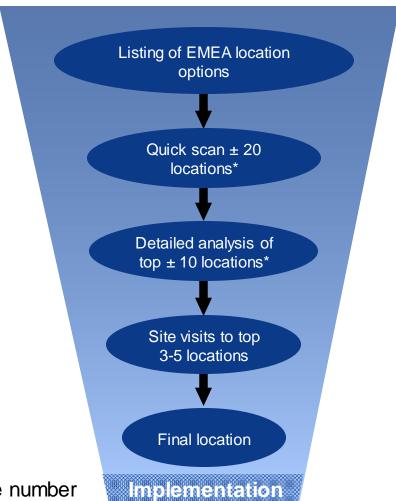
Quick scan:

Limiting the search area to target areas

Stage C

In-depth assessment selected target areas

Stage D

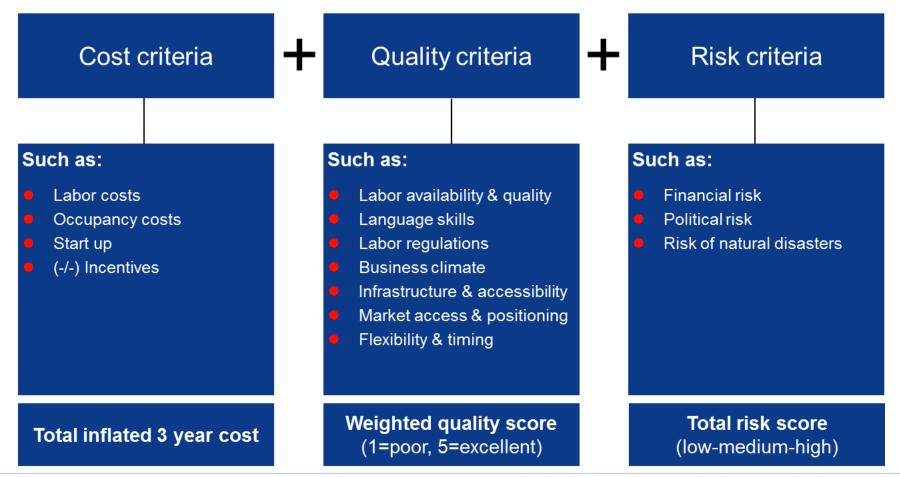

Identification of sites and site visits

Stage E

Negotiations

Stage F

Final choice



* Indicative number

Location criteria are driven by Cost, Quality and Risk factors

In our site selection approach we use cost, quality and risk criteria to develop a complete assessment of regions & locations

Listing of <u>Cost</u> requirements for a manufacturing plant (example)

Cost Category			
One time capital costs			
1 Land / Site	1.1 1.2	Land costs Building costs	In USD / Euro In USD / Euro
Annual operating costs			
2 Labor	2.12.22.3	Total employers costs manufacturing operator/working hours Total employers costs skilled engineer/working hours Total employers costs production plant manager/working hours	In USD / Euro In USD / Euro In USD / Euro
3 Distribution	3.1 3.2	Outbound transportation costs to customers Inbound transportation costs from suppliers	In USD / Euro In USD / Euro
4 Utility costs	4.1	Annual utility costs (electricity, gas, water)	In USD / Euro
5 Taxes	5.1	Corporate income tax/tax deductions	In USD / Euro
6 Incentives (-/-)	6.1 6.2 6.3	Investment grants Employment incentives Training grants	In USD / Euro In USD / Euro In USD / Euro
Total			In USD / Euro

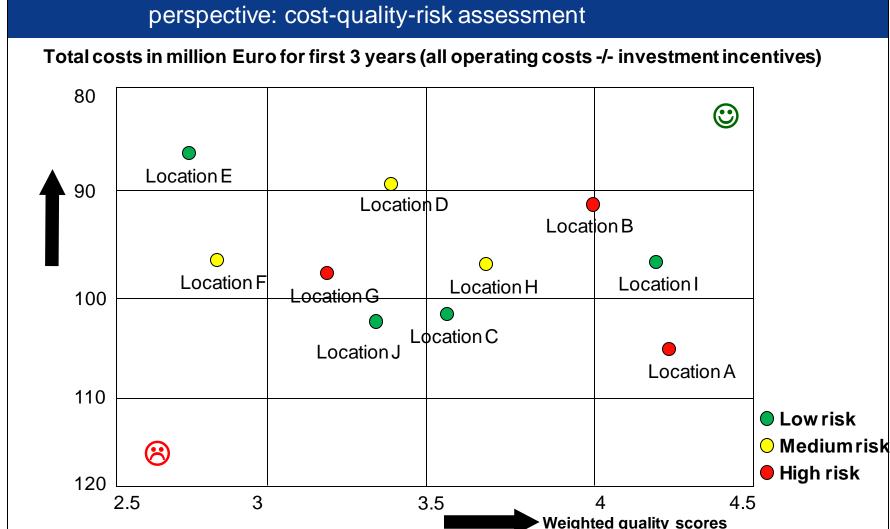
Costs will be calculated in Euro/ USD and forecasted for the next 3 years (including inflation, expected wages increase, etc.)

Listing of Quality requirements (example)

Quality category			
A Talent/Labor	%	A1 Medtech base A2 Talent pool depth A3 Competing employers A4 New/expanding employers A5 Population trends A6 Cost of living	% % % %
B Labor regulations	%	B1 Unionization degree B2 Hiring/firing regulations	% %
C Proximity to markets/ accessibility	%	C1 Proximity to markets C2 Highways C3 Railway connections C4 Airport connections	% % %
D Sites/buildings	%	D1 Building availability D2 Site availability D3 Geographical considerations	% %
E Supplier availability	%	E1 Sources of ceramic discs	%
F Utilities	%	F1 Electric power capacity/reliability F2 Natural gas availability F3 Telecommunications	% %
G Ease of implementation	%	G1 Business climate ranking G2 Fast track construction G3 Ease of permitting	% %
	100%		

The quality requirements will be assessed using scores between 1 (poor) to 5 (excellent)

All data and scores will be made available to ensure transparency of the assessment process


Listing of Risk requirements (example)

Quality category			Low/Medium/High
A Political Risks	%	A1 Government stability/ democracy A2 Geopolitical conflicts	L/M/H L/M/H
B Economic Risks	%	B1 Development economy B2 Inflation	L/M/H L/M/H
C Financial Risks	%	C1 Financial risk rating C2 Currency convertibility C3 Exchange rate stability	L/M/H L/M/H L/M/H
D Legal Risks	%	D1 Patent infringements D2 Permits D3 Data protection	L/M/H L/M/H L/M/H
E Transparency Risks	%	E1 Corruption E2 Bureaucracy	L/M/H L/M/H
F Security Risks	%	F1 Religious & ethnic tensions F2 Terrorism	L/M/H L/M/H
G Natural Disaster Risks	%	G1 Climatic catastrophes G2 Hydrological catastrophes G3 Meteorological events G4 Geophysical events G5 Health hazards/ pandemics	L/M/H L/M/H L/M/H L/M/H L/M/H
	100%		

Cost-Quality-Risk matrix of the locations

Project specific site selection results for a production plant in Example: perspective: cost-quality-risk assessment

7 Your Role in a Location Decision Process

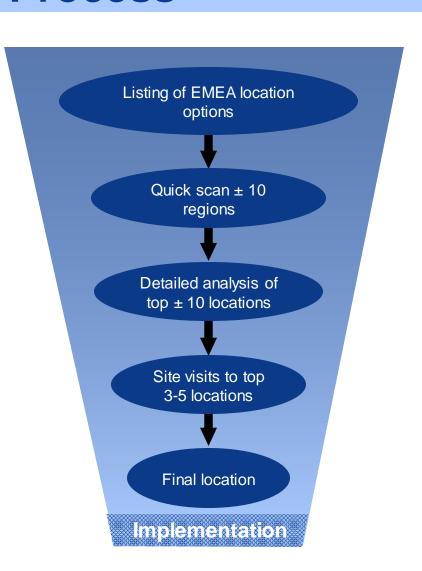
Phase A:

Identification of location options

Phase B:

Quick Scan

Phase C:


Detailed analysis

Phase D:

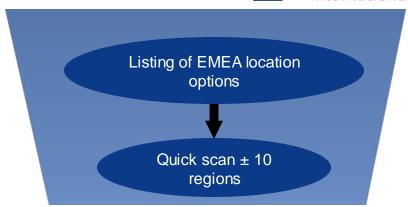
Site visits

Phase E:

Negotiations

Your input

1 Request for information (RFI)


2 Detailed RFI

3 Site visits

Request for information

Phase B Quick scan

Objective

 Selection of cost effective, high quality and secure regions, in order to narrow down to a short list

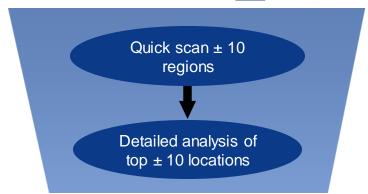
Actions

- Consultant / company carries out desk research and develops a RFI
- You receive a RFI (project profile and specific questions) and respond to the questions within a certain time period

Experiences

- Prompt response from all, confirming the receipt of the RFI
- Most of the agencies respond pro-actively and provide us with tailored answers to the RFI
- Most agencies simply respond, others contact us and go through the query, adding suggestions and asking for more background information (~20% of the agencies)
- Some agencies often refer to their website, however the required information is not of the quality we need (example: labour cost and availability of specific job titles)
- Difficult questions are avoided (e.g. multilingual skills and native speakers)
- Some agencies offer tailor made assistance and models to calculate potential impacts of incentives

Tips



- Be on 'mental map' of consultants / intermediaries
- Appoint a project officer/account manager
- Confirm receipt of RFI
- Provide feedback on profile and questions in order to make sure you understand rationale
- Confirm deadline
- Provide answers based upon the latest figures
- Add references/sources and year

Detailed RFI

Phase C Detailed analysis

Objective

- More detailed analysis of less locations
- Narrowing down to a site level of 3-5 locations to visit

Actions

You receive a more detailed RFI in general on:

- Labour issues such as: costs, quality, skills, availability, competition, etc.
- Buildings such as: accessibility (physical and telecom), availability, costs and specific needs of the investor

Incentives

Experiences

- Happy to be on the shortlist' and confirming the deadline
- Those who did not make it: only 20% asks feedback

Tips

- Provide answers based upon the latest figures
- Add references/sources
- Fine tune with consultant

Key challenges with detailed RFQ

- A Diversity of information
- B Time needed to respond
- C Cost factors often not clear

A Large diversity of information supply

The information varies between:

- One page (A-4) high level, tailor-made response answering all questions to the point
- A 'business case' (up to 10 pages) with tailor-made arguments for the region and detailed answers to all questions asked
- Bits and pieces of readily available studies covering (often touching)
 the questions asked
- Hard copy info pack by mail

B Diversity of time needed to provide info

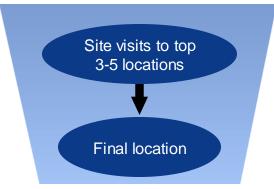
The timing needed for providing the information varies between:

- All info days before the dead-line
- Just before or at dead-line (7 days)
- > 10 days, announced or un-announced

Tips

- Save time by focusing on specifics of RFI (e.g. specific building propositions are often not relevant in this phase of the project)
- Send available info a.s.a.p. and come back later with more difficult to obtain info

C Cost factors often not clear



- Often large ranges in employment costs as there is not enough focus on the provided job profile(s)
- Incentives: often too general information instead of a tailor-made response, if we must assume something, we will be conservative!
- Real Estate cost: Prime A, B and C office/industrial real estate costs.
 Some already come up with cheaper / creative solutions, this becomes more relevant only later in the process
- Limited focus on a five years perspective for labour cost and labour availability, help the client with their assumptions

Site visits

Phase D Site visits

Objective

Selection of the best site meeting the requirements

Actions

Site visit (often) joint investor/BCI team

Tips: Do's and don'ts of site visits

Do's

- Assist
- Organize
- Anticipate

Don'ts

- Over-organize
- Over-sell
- Over-facilitate

Site visits - Do's

Assist

- Find the 'match' for the potential investor
- Support, provide information and aid
- Show interest in client, project and project team: ask questions
- Make sure your own people speak languages

Organise

- Prepare information packages and communicate program with consultant
- Prioritise: focus on key issues
- Introduce the company to recent investors (testimonials),
 labour and recruitment offices and real estate agents

Anticipate

- Have experts available to answer specific or technical questions
- Plan Recaps at the end of the visit: agree on your 'To Do List'

Site visits - Do's

General

- Express the region's welcoming attitude and hospitality to accommodate the company in your region
- Facilitate the investor in the best possible way (transport, accommodations, etc.)
- Convince the client that you represent the whole area and do not want to push to less attractive areas

Site visits - Don'ts

Over-organise

- Don't plan too long lunches and official dinners at the first visit
- Don't plan evening events (no late wrap-ups nor entertainment): the client wants to evaluate with its team, without you
- Don't show too many sites: 'If you don't like this site, we'll find another one'

Over-sell

- Don't over-estimate your region and your region's capabilities: 'We are the heart of Europe, no doubt we are the best region!'
- Focus on your own region's qualities and don't slander competitors
- Don't influence the discussions with other investors too much, trust that company will ask all their relevant questions and hope to get confirmation from party visited

Site visits - Don'ts

Over-facilitate •

- Allow every 2-3 hours the company to:
 - make phone calls
 - send e-mails
 - have a bio-break
- Focus on the major drivers of a location choice and skip the details at the first visit

General

 You should be an ambassador of your region so sell it, but don't be too pushy and don't underestimate the (gut) feelings of the potential investors ('feelings are facts too' so be open to them)

Trends and Changing Location Requirements in Manufacturing